Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Journal of the American College of Surgeons ; 236(5 Supplement 3):S14, 2023.
Article in English | EMBASE | ID: covidwho-20242035

ABSTRACT

Introduction: Lactate is a common biomarker used in multiple surgical subspecialties. No one has previously measured coronary sinus lactate reduction as a result of drug administration. We therefore tested the hypothesis that IV geranylgeranylacetone (GGA), a novel agent used to treat human peptic ulcer disease, would result in reduced coronary sinus lactate production. Method(s): New Zealand adult rabbits (N=5 each) received IV 50 mg/kg GGA 24 hours before intervention, which consisted of Langendorff perfusion, 30 min of global normothermic cardioplegic arrest, followed by reperfusion. Myocardial release of lactate was measured. HSP70 was quantified by western blot. Differences between GGA+ and GGA- groups pre- and post-ischemia were analyzed by unpaired t-tests. Result(s): In the GGA- group, lactate increased immediately at one minute and throughout the duration of reperfusion. However, in GGA+ hearts, lactate also increased at one min of reperfusion but then continued to decrease throughout the remainder of reperfusion. Lactate was significantly less at every time point of reperfusion in GGA+. Integrated lactate area was significantly less throughout reperfusion in GGA+. Conclusion(s): GGA induced caused a marked decrease in coronary sinus lactate release during reperfusion. Simultaneously intravenously GGA induced myocardial HSP70i and reduced myocardial damage. Further study of the effects and mechanisms involved is indicated. Application to other organs is useful as well. Heat shock proteins (HSPS) are also antithrombotic. Given the thrombotic nature of Covid, induction of HSPS may be beneficial in decreasing the cardiac thoracic and vascular complications of Covid and allowing faster resolution of this disease during to vascular complications.

2.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: covidwho-20245260

ABSTRACT

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chick Embryo , Infectious bronchitis virus/genetics , Organ Culture Techniques , Trachea , Chickens , Cell Line , Coronavirus Infections/veterinary
3.
Current Traditional Medicine ; 9(3):28-43, 2023.
Article in English | EMBASE | ID: covidwho-2267482

ABSTRACT

The mass casualties caused by the delta variant and the wave of the newer "Omicron" variant of SARS-COV-2 in India have brought about great concern among healthcare officials. The government and healthcare agencies are seeking effective strategies to counter the pandemic. The application of nanotechnology and repurposing of drugs are reported as promising approaches in the management of COVID-19 disease. It has also immensely boomed the search for productive, re-liable, cost-effective, and bio-assimilable alternative solutions. Since ancient times, the traditional-ly employed Ayurvedic bhasmas have been used for diverse infectious diseases, which are now employed as nanomedicine that could be applied for managing COVID-19-related health anomalies. Like currently engineered metal nanoparticles (NPs), the bhasma nanoparticles (BNPs) are also packed with unique physicochemical properties, including multi-elemental nanocrystalline compo-sition, size, shape, dissolution, surface charge, hydrophobicity, and multi-pathway regulatory as well as modulatory effects. Because of these conformational and configurational-based physico-chemical advantages, Bhasma NPs may have promising potential to manage the COVID-19 pandemic and reduce the incidence of pneumonia-like common lung infections in children as well as age-related inflammatory diseases via immunomodulatory, anti-inflammatory, antiviral, and adju-vant-related properties.Copyright © 2023 Bentham Science Publishers.

4.
Indonesian Journal of Pharmacy ; 33(4):592-601, 2022.
Article in English | EMBASE | ID: covidwho-2233868

ABSTRACT

Stress during Coronavirus disease-2019 (COVID-19) pandemic affects the physiological and immunological response to women's reproductive health. Meanwhile, Apium graveolens and Eucalyptus globulus are immunomodulators related to women's reproductive health. This investigation had a goal to examine the effectiveness of A. graveolens and E. globulus towards the expression of Heat Shock Protein-70 (HSP70) as the primary biomarker of stress, Tumor Necrosis Factor-Alpha (TNF-alpha) as a pro-inflammatory protein, along with Luteinizing Hormone (LH) and Growth Differentiation Factor 9 (GDF-9) as folliculogenesis markers. An experimental randomized controlled trial was utilized by using a pre-test and post-test control group design. Sixty women, who had stress based on DASS-21 questionnaire, were divided into two groups in Nusukan Health Center, Indonesia. The intervention group was orally administered with 300 mg A. graveolens capsules and E. globulus essential oil for 14 days, while the control group was given a placebo. Blood samples and stress levels were then evaluated before and after the intervention. No significant difference was found in the stress levels of the control and treatment groups at the pre-test. Meanwhile, the intervention group had the decreased HSP70, TNF-alpha, and stress levels (p<0.001). In contrast, increased LH and GDF-9 levels were displayed in the intervention group compared to the control group (p<0.001). These findings revealed that A. graveolens supplementation and E. globulus essential oil have the ability to decrease stress and are able to protect folliculogenesis markers on women's reproductive health due to stressful conditions during pandemic COVID-19. Copyright © 2022 by Indonesian Journal of Pharmacy (IJP).

5.
Biomolecules ; 13(2)2023 01 20.
Article in English | MEDLINE | ID: covidwho-2199744

ABSTRACT

BACKGROUND: Diarrhea is present in up to 30-50% of patients with COVID-19. The mechanism of SARS-CoV-2-induced diarrhea remains unclear. We hypothesized that enterocyte-enteric neuron interactions were important in SARS-CoV-2-induced diarrhea. SARS-CoV-2 induces endoplasmic reticulum (ER) stress in enterocytes causing the release of damage associated molecular patterns (DAMPs). The DAMPs then stimulate the release of enteric neurotransmitters that disrupt gut electrolyte homeostasis. METHODS: Primary mouse enteric neurons (EN) were exposed to a conditioned medium from ACE2-expressing Caco-2 colonic epithelial cells infected with SARS-CoV-2 or treated with tunicamycin (ER stress inducer). Vasoactive intestinal peptides (VIP) expression and secretion by EN were assessed by RT-PCR and ELISA, respectively. Membrane expression of NHE3 was determined by surface biotinylation. RESULTS: SARS-CoV-2 infection led to increased expression of BiP/GRP78, a marker and key regulator for ER stress in Caco-2 cells. Infected cells secreted the DAMP protein, heat shock protein 70 (HSP70), into the culture media, as revealed by proteomic and Western analyses. The expression of VIP mRNA in EN was up-regulated after treatment with a conditioned medium of SARS-CoV-2-infected Caco-2 cells. CD91, a receptor for HSP70, is abundantly expressed in the cultured mouse EN. Tunicamycin, an inducer of ER stress, also induced the release of HSP70 and Xbp1s, mimicking SARS-CoV-2 infection. Co-treatment of Caco-2 with tunicamycin (apical) and VIP (basolateral) induced a synergistic decrease in membrane expression of Na+/H+ exchanger (NHE3), an important transporter that mediates intestinal Na+/fluid absorption. CONCLUSIONS: Our findings demonstrate that SARS-CoV-2 enterocyte infection leads to ER stress and the release of DAMPs that up-regulates the expression and release of VIP by EN. VIP in turn inhibits fluid absorption through the downregulation of brush-border membrane expression of NHE3 in enterocytes. These data highlight the role of epithelial-enteric neuronal crosstalk in COVID-19-related diarrhea.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , SARS-CoV-2/metabolism , Sodium-Hydrogen Exchanger 3 , Tunicamycin , Caco-2 Cells , Culture Media, Conditioned , Proteomics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Diarrhea , Endoplasmic Reticulum Chaperone BiP , Neurons/metabolism
6.
Anal Chim Acta ; 1242: 340716, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2149181

ABSTRACT

In this research, by using aptamer-conjugated gold nanoparticles (aptamer-AuNPs) and a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and Acropora-like gold (ALG) nanostructure, a sandwich-like system provided for sensitive detection of heat shock protein 70 kDa (HSP70), which applied as a functional biomarker in diagnosis/prognosis of COVID-19. Initially, the surface of the GCE was improved with rGO and ALG nanostructures, respectively. Then, an aptamer sequence as the first part of the bioreceptor was covalently bound on the surface of the GCE/rGO/ALG nanostructures. After adding the analyte, the second part of the bioreceptor (aptamer-AuNPs) was immobilized on the electrode surface to improve the diagnostic performance. The designed aptasensor detected HSP70 in a wide linear range, from 5 pg mL-1 to 75 ng mL-1, with a limit of detection (LOD) of ∼2 pg mL-1. The aptasensor was stable for 3 weeks and applicable in detecting 40 real plasma samples of COVID-19 patients. The diagnostic sensitivity and specificity were 90% and 85%, respectively, compared with the reverse transcription-polymerase chain reaction (RT-PCR) method.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , Graphite/chemistry , Carbon/chemistry , Limit of Detection , Prognosis , Electrochemical Techniques/methods , Biosensing Techniques/methods , Electrodes , COVID-19 Testing
7.
Gastroenterology ; 162(7):S-364, 2022.
Article in English | EMBASE | ID: covidwho-1967299

ABSTRACT

Background: Diarrhea is present in up to 36.6% of patients with COVID-19. The mechanism of SARS-CoV-2-induced diarrhea remains unclear. We hypothesized that enterocyte-enteric neuron interactions were important in SARS-CoV-2-induced diarrhea. SARS-CoV-2 induces endoplasmic reticulum (ER) stress in enterocytes causing the release of Damage Associated Molecular Patterns (DAMPs). The DAMPs then stimulate the release of enteric neurotransmitters that disrupt gut electrolyte homeostasis. The influence of ER stress and enteric neuronderived vasoactive intestinal peptide (VIP) on the expression of Na+/H+ exchanger 3 (NHE3), an important transporter that mediates intestinal Na+/fluid absorption, was further examined. Methods: SARS-CoV-2 propagated in Vero-E6 cells was used to infect Caco-2, a human colon epithelial cell line that expresses SARS-CoV-2 entry receptor ACE2. The expression of ER stress markers, phospho-PERK, Xbp1s, and DAMP proteins, was examined by Western blotting. Primary mouse enteric neurons were treated with a conditioned medium of Caco- 2 cells that were infected with SARS-CoV-2 or treated with tunicamycin. VIP expression by cultured enteric neurons was assessed by RT-qPCR, Western blotting, and ELISA. Membrane expression of NHE3 was determined by surface biotinylation. Results: SARS-CoV-2 infection of Caco-2 cells led to increased expression of phospho-PERK and Xbp1s indicating increased ER stress. Infected Caco-2 cells secreted DAMP proteins, including HSP70 and calreticulin, as revealed by proteomic and Western analyses. The expression of VIP mRNA in enteric neurons was up-regulated after treatment with a conditioned medium of SARS-CoV-2- infected Caco-2 cells (Mock, 1 ± 0.0885;and SARS-CoV-2, 1.351 ± 0.020, P=.005). CD91, a receptor for HSP70 and calreticulin, is abundantly expressed in cultured mouse and human enteric neurons and was up-regulated by a conditioned medium of SARS-CoV-2-infected Caco-2 cells. Tunicamycin, an inducer of ER stress, also induced the secretion of HSP70 and calreticulin, mimicking SARS-CoV-2 infection. Moreover, co-culture of enteric neurons with tunicamycin-treated Caco-2 cells stimulated VIP production as determined by ELISA. Co-treatment of Caco-2 cells with tunicamycin (apical) and VIP (basolateral) induced a synergistic decrease in the membrane expression of NHE3. Conclusions: Our findings demonstrate that SARS-CoV-2 infection of enterocytes leads to ER stress and the release of DAMPs that up-regulate the expression and release of VIP by enteric neurons. The presence of ER stress together with the secreted VIP, in turn, inhibits fluid absorption through the downregulation of brush-border membrane expression of NHE3 in the enterocytes. These data highlight epithelial-neuronal crosstalk in COVID-19 related diarrhea. (Figure Presented)

8.
Journal of Pharmacy and Pharmacognosy Research ; 10(3):418-428, 2022.
Article in English | EMBASE | ID: covidwho-1885202

ABSTRACT

Context: Oral manifestations that arose from COVID-19 infection often causes morbidity and systemic drug administration is less effective. Roselle flower (Hibiscus sabdariffa) is one of the plants that is often used in infusion as it gives health benefits. Hence, H. sabdariffa may benefit from adjuvant therapy to treat oral manifestation due to COVID-19. Aims: To investigate the potential of H. sabdariffa anthocyanins, tartaric acid, and ascorbic acid chemical compounds as antiviral, anti-inflammatory, antioxidant, and increasing tissue regeneration in oral manifestation due to COVID-19 infection in silico. Methods: Chemical compounds consisted of anthocyanins, (+)-tartaric acid, and ascorbic acid beside target proteins consisted of ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR and MDA-ovalbumin were obtained from the database, ligand samples were selected through absorption, distribution, metabolism, excretion and toxicology analysis, then molecular docking simulations, identification of protein-ligand interactions, and 3D visualization were performed. Results: Anthocyanins, tartaric acid, and ascorbic acid are the active compounds in H. sabdariffa, which act as antioxidants. The activity of anthocyanin compounds is higher than other compounds through value binding affinity, which is more negative and binds to specific domains of target proteins by forming weak binding interactions that play a role in biological responses. Anthocyanins have the most negative binding energy compared to tartaric-acid and ascorbic acid. Conclusions: Anthocyanins act as antioxidants;this mechanism increases heat shock protein-70 (HSP70), which may play an important role in increasing wound regeneration of oral manifestation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as documented in silico.

9.
Biochemical and Cellular Archives ; 21(2):1-2, 2021.
Article in English | EMBASE | ID: covidwho-1812557
10.
Journal of Heart and Lung Transplantation ; 41(4):S363-S364, 2022.
Article in English | EMBASE | ID: covidwho-1796801

ABSTRACT

Purpose: Background: Ischemia reperfusion(IR) increases lactate. No one has examined if cardiac-specific coronary sinus lactate(CSL) can be reduced with prior cytoprotective heat shock protein 70(hsp70i) induction. We previous demonstrated improved IR in vivo with inducted hsp70i. Geranylgeranylacetone(GGA), an hsp70i inducer, has never been administered IV preischemically. Interventions to decrease CSL may improve clinical parameters. Methods: Rabbit hearts underwent 30 cold cardioplegic ischemia then 60 min reperfusion. One group received IVGGA 24 hours prior(GGA+) and the other vehicle(GGA-). CSlactate was collected prior to ischemia and throughout reperfusion. We aimed to determine IVGGA effects on myocardial hsp70i and lactate. Hsp70 western blot was performed. Results: Baseline CSlactate was similar between GGA+ and GGA-(Figure 1). Both peaked CSlactate at 1 minute reperfusion. However GGA+ peak was less. At every time point GGA+ was less. GGA+ CSlactate continued to decrease throughout reperfusion however in GGA- CSlactate increased later. Integrated CS lactate area was less for GGA+(Figure 1). Conclusion: In summary, protective IVGGA resulted in five lactate benefits: lactate was less at 1 minute reperfusion peak,decreased faster in early reperfusion, was reduced at all time points, does not have a second rise and lastly results in overall less integrated lactate production in GGA+. GGA induced hsp70. IVGGA may have clinical applications in endothelial protection in IR and COVID.

11.
Current Proteomics ; 19(1):1-2, 2022.
Article in English | Scopus | ID: covidwho-1742082
12.
Acta Physiologica ; 234(SUPPL 724):55, 2022.
Article in English | EMBASE | ID: covidwho-1703228

ABSTRACT

AIM: Levamisole, an antiparasitic drug, was reported to have positive effects in various clinical trials in the treatment of COVID-19. However, the number of studies on the effects of levamisole on the reproductive system and sexual behavior in male rats is limited. The present study aimed to investigate the possible effects of levamisole on sexual behavior, testicular histopathology, serum gonadotropin, and testosterone levels in male rats. METHODS: Twenty male Sprague-Dawley rats were divided into two groups as control and levamisole were used. Rats were given levamisole (2 mg/kg) dissolved in distilled water for 30 days, while only distilled water was administered to the control group by oral gavage. Finally, sexual behavior tests (SBT) were performed for 30 min. Then, the animals were decapitated, blood samples and testis tissues were taken. The Bax, Hsp70 and cytochrome c immunohistochemistry staining were performed in testis tissues, and gene expression levels were measured by real-time PCR. The luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels were measured by ELISA in serum samples. RESULTS: In SBT parameters, mount latency (ML, p<0.001), intromission latency (IL, p<0.01), and the postejaculatory interval (PEI, p<0.01) were significantly prolonged. Also, the copulatory rate (CR, p<0.05) was significantly reduced. Serum LH, FSH, and testosterone levels did not change. In the histopathological stainings, irregularities in the seminiferous tubule germinal epithelium, congestion, edema in the interstitial area, and metaphase arrest in some spermatocytes were detected in the levamisole group (p<0.001). Levamisole treatment also significantly increased cytochrome c, Bax, and Hsp 70 immunoreactivities and Bax (p=0.05) and Hsp 70 (p<0.01) gene expression levels in testicular tissue. CONCLUSION: Levamisole may decrease sexual motivation and copulation efficiency. Also, it may adversely affect testicular histopathology in male rats.

SELECTION OF CITATIONS
SEARCH DETAIL